Not just detection: Moving towards *attribution* of change agent using Landsat time series information

Robert E. Kennedy¹, Zhiqiang Yang¹, Justin Braaten¹
Warren B. Cohen²

Digital change detection: Who needs it?

To infer and predict, we need to know what caused the change

Better Detection = Tougher Attribution

Luxury Changes

- Spectrally distinct
- Abrupt in time
- Large in area
- Unambiguously validated
- Single-agent

Challenging Changes

- Spectrally ambiguous
- Long- and short-duration
- Small area
- Hard to validate
- Multi-agent

Are there organizing principles?

Principle One: Look for changes in process

- Change occurs all the time
 - Internal and external processes
 - Variable velocities and magnitudes: Vectors
- What matters is when the processes change
 - Result: Shift in direction of change vectors

Temporal segmentation of the Landsat archive

- Spectral trajectories can act as proxies for that change
- LandTrendr* strategy
 - Simplify temporal trajectory into periods of consistent process: SEGMENTS
 - Separated by VERTICES

^{* &}quot;Landsat based detection of trends in disturbance and recovery"; See Kennedy et al. 2010 RSE 2897-2910

Example change information: Magnitude

Disturbance magnitude dropped on federal forests under Northwest Forest Plan (1994)

Principle Two: Attribution must be at patch scale

- The vocabulary of attribution is inherently patch-based
 - "Development", "Thinning", etc.
- At a pixel scale, the signal is really about biophysical properties
 - Processes of vegetation loss or gain
- Similar biophysical signals have different meanings in a patch context

But what makes a patch?

Is it adjacency in the same year?

Maybe, but longer-duration processes, temporal overlap should be considered

Principle Three: Use temporal context

- Vocabulary of attribution is implicitly temporal
 - "Clearcutting" implies forest management that may return to forest, but "Development" implies a state change
- Attribution of a change in process can be aided by knowing the processes occurring before and after

High-magnitude disturbance followed by regrowth

Low-magnitude
disturbance
followed by
continued decline

Spectral signals of change

Impervious cover from NLCD

Example: Yearly NLCD

Principle Four: Humans need to be involved

- Final goal may be automation, but definitions of change need to first be called by humans
 - Spatial context
 - Labeling
- Use TimeSync tool along with Google Earth

"Development", not "Clearcutting"

Our framework for attribution

 Goal of attribution: Maximize change information and leverage human interpretation for large-area attribution modeling

Examples

- Attribution is playing a role in several new & upcoming projects
 - Carbon cycle science project
 - National park projects
 - Habitat monitoring for salmonids

Forest disturbance mapping WA, OR, CA

 New carbon cycle science project aims to link change, FIA plots, and change attribution to better understand drivers of carbon change

Disturbance labeling in Olympic NP

Moving away from forests

- Prior work focuses on natural vegetation, primarily in forests
- Monitoring for salmonids requires us to cover entire watersheds

Attribution model outside of forest is promising

Initial errors already good

	ag to ag	ag to urban	non-ag to urban	forest to ag	phenology	class.error	class.error2
ag to ag	30	2	0	0	0	0.06	0.06
ag to urban	3	18	6	0	0	0.33	0.11
non-ag to urban	0	7	50	0	0	0.12	0
forest to ag	0	0	1	0	0	1.00	1
phenology	0	0	1	0	0	1.00	1

Summary

- Our attribution principles:
 - Identify change in process
 - Work in patches
 - Use temporal context
 - Humans train the model
- Other key pieces:
 - Random forest model is non-parametric and probabilistic
 - Process of modeling is intended to be iterative
 - Other spatial data are useful too!

Thanks

Temporal smoothing

Works around a typical tension in change mapping:
 You can either map change or state but not both

information on change

Example: Yearly NLCD-analog for Puget Sound

1986 NLCD^{LT}

2005 NLCDLT

Yearly NLCD

Impervious cover from NLCD

Classifier based on a single year can be "painted" to other years to characterize change

Attribution and Validation

 Goal of attribution: Maximize change information and leverage human interpretation for large-area attribution modeling

Post-disturbance fitted trajectory

Summary

- We are no longer in the era of "luxury change"
- Temporal segmentation simplifies Landsat's spectral trajectory over years
- The simplified trajectory can be summarized into a wide range of maps
- Temporal fitting incorporates change and state information
- Change attribution is critical to bring inference full circle

THANKS...

First stabs at attribution

lands

Forested Non-Forest lands

Salmonid monitoring: Full landscape change dynamic mapping

Attribution

Archive allows better or new information